I’m trying to understand the translation and rotation values that can be obtained by carrying out an export of the registration. For this, I compare the outputs of the different formats (always using the same coordinate system: same as XMP, without intrinsics correction).
But, I obtain different translation value.
XMP:
<xcr:Rotation>0.424828828177554 -0.13991368492355 0.894396236307153 0.325947976627987 0.945362267612218 -0.0069353808263044 -0.844558099411407 0.294472993237408 0.44722172685637</xcr:Rotation>
<xcr:Position>0.714479148115481 -0.177270951092812 -0.0264891105221016</xcr:Position>
Boujou:
0.4248288281775534 -0.1399136849235504 0.8943962363071527 0.3259479766279875 0.9453622676122183 -6.935380826304462e-003 -0.8445580994114068 0.2944729932374078 0.4472217268563703 -0.3046422104944024 -6.548147643347439e-002 0.6674671647344179 12656.95762373309
#name,x,y,z,omega,phi,kappa
002.JPG,0.7144791481154812,-0.1772709510928123,-2.648911052210164e-002,171.5813330111418,17.12593843801707,117.9027145225503
#name,x,y,z,heading,pitch,roll
002.JPG,0.7144791481154812,-0.1772709510928123,-2.648911052210164e-002,-160.9765071436788,0.3973712362667207,-116.5662610790813
I dont understand the calculated Euler Angles. Beginning with matrice values and using Matlab Euler Conversion, I obtain the following value (depending the different angle prior; XYZ should be equivalent omega, phi, kappa)
XYZ: [x: 0.8884548, y: 63.4309844, z: 18.2288489]
XYZ: [x: 17.3014052, y: 64.5927726, z: 8.0428512]
YXZ: [x: 0.3973713, y: 63.4337392, z: 19.0234925]
YZX: [x: 0.4203267, y: 63.2967327, z: 19.0230174]
ZXY: [x: 17.1259384, y: 62.0972861, z: 8.4186666]
ZYX: [x: 33.3628918, y: 57.6246229, z: 37.4970582]
How are these different value converted ?